7,426 research outputs found

    Pattern formation and spatial correlation induced by the noise in two competing species

    Get PDF
    We analyze the spatio-temporal patterns of two competing species in the presence of two white noise sources: an additive noise acting on the interaction parameter and a multiplicative noise which affects directly the dynamics of the species densities. We use a coupled map lattice (CML) with uniform initial conditions. We find a nonmonotonic behavior both of the pattern formation and the density correlation as a function of the multiplicative noise intensity.Comment: 10 pages, 7 figures. accepted for publication in Acta Phys. Pol.

    Asymptotic regime in N random interacting species

    Get PDF
    The asymptotic regime of a complex ecosystem with \emph{N}random interacting species and in the presence of an external multiplicative noise is analyzed. We find the role of the external noise on the long time probability distribution of the i-th density species, the extinction of species and the local field acting on the i-th population. We analyze in detail the transient dynamics of this field and the cavity field, which is the field acting on the ithi^{th} species when this is absent. We find that the presence or the absence of some population give different asymptotic distributions of these fields.Comment: 11 pages, 6 figures. To be published in Eur. Phys. J.

    Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise

    Get PDF
    We analyze the dynamics of the FitzHugh-Nagumo (FHN) model in the presence of colored noise and a periodic signal. Two cases are considered: (i) the dynamics of the membrane potential is affected by the noise, (ii) the slow dynamics of the recovery variable is subject to noise. We investigate the role of the colored noise on the neuron dynamics by the mean response time (MRT) of the neuron. We find meaningful modifications of the resonant activation (RA) and noise enhanced stability (NES) phenomena due to the correlation time of the noise. For strongly correlated noise we observe suppression of NES effect and persistence of RA phenomenon, with an efficiency enhancement of the neuronal response. Finally we show that the self-correlation of the colored noise causes a reduction of the effective noise intensity, which appears as a rescaling of the fluctuations affecting the FHN system.Comment: 13 pages, 10 figure

    Nonmonotonic Pattern Formation in Three Species Lotka-Volterra System with Colored Noise

    Get PDF
    A coupled map lattice of generalized Lotka-Volterra equations in the presence of colored multiplicative noise is used to analyze the spatiotemporal evolution of three interacting species: one predator and two preys symmetrically competing each other. The correlation of the species concentration over the grid as a function of time and of the noise intensity is investigated. The presence of noise induces pattern formation, whose dimensions show a nonmonotonic behavior as a function of the noise intensity. The colored noise induces a greater dimension of the patterns with respect to the white noise case and a shift of the maximum of its area towards higher values of the noise intensity.Comment: 6 pages, 3 figure

    A Simple Noise Model with Memory for Biological Systems

    Get PDF
    A noise source model, consisting of a pulse sequence at random times with memory, is presented. By varying the memory we can obtain variable randomness of the stochastic process. The delay time between pulses, i. e. the noise memory, produces different kinds of correlated noise ranging from white noise, without delay, to quasi-periodical process, with delay close to the average period of the pulses. The spectral density is calculated. This type of noise could be useful to describe physical and biological systems where some delay is present. In particular it could be useful in population dynamics. A simple dynamical model for epidemiological infection with this noise source is presented. We find that the time behavior of the illness depends on the noise parameters. Specifically the amplitude and the memory of the noise affect the number of infected people.Comment: 8 pages, 4 figure

    Noise in ecosystems: a short review

    Full text link
    Noise, through its interaction with the nonlinearity of the living systems, can give rise to counter-intuitive phenomena such as stochastic resonance, noise-delayed extinction, temporal oscillations, and spatial patterns. In this paper we briefly review the noise-induced effects in three different ecosystems: (i) two competing species; (ii) three interacting species, one predator and two preys, and (iii) N-interacting species. The transient dynamics of these ecosystems are analyzed through generalized Lotka-Volterra equations in the presence of multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is random in cases (i) and (iii), and a periodical function, which accounts for the environmental temperature, in case (ii). We find noise-induced phenomena such as quasi-deterministic oscillations, stochastic resonance, noise-delayed extinction, and noise-induced pattern formation with nonmonotonic behaviors of patterns areas and of the density correlation as a function of the multiplicative noise intensity. The asymptotic behavior of the time average of the \emph{ithi^{th}} population when the ecosystem is composed of a great number of interacting species is obtained and the effect of the noise on the asymptotic probability distributions of the populations is discussed.Comment: 27 pages, 16 figures. Accepted for publication in Mathematical Biosciences and Engineerin

    Role of the Colored Noise in Spatio-Temporal Behavior of Two Competing Species

    Get PDF
    We study the spatial distributions of two randomly interacting species, in the presence of an external multiplicative colored noise. The dynamics of the ecosystem is described by a coupled map lattice model. We find a nonmonotonic behavior in the formation of large scale spatial correlations as a function of the multiplicative colored noise intensity. This behavior is shifted towards higher values of the noise intensity for increasing correlation time of the noise.Comment: 6 pages, 3 figure
    • …
    corecore